

United States
Department of
Agriculture
Forest Service

Forest Products Laboratory'

Research Note FPL-0244

July 1981

Analysis of (2) LEVEL III Continuous Beams with Joint Slip,

LAWRENCE A SOLTIS Engineer

Jack to the

S DTIC ELECTE NOV 3 1981

① Jul 21

В

Abstract

 A computer analysis with user guidelines to analyze partially continuous multi-span beams is presented.
 Partial continuity is due to rotational slip which occurs at spliced joints at the supports of continuous beams such as floor joists. Beam properties, loads, and joint slip are input; internal forces, reactions, and deflections are output.

Introduction

Floor joist deflection and maximum design moment are decreased by utilizing continuous joists over two or more spans compared to simply supported joists. Splices are used to attain the lengths required for continuous members. The splices, whether nailed, boited, glued, or truss plated, if located at an interior support, will have rotational slip occur when subjected to bending moment. Thus the beam continuity is disrupted with the joist acting somewhere between a simply supported and a fully continuous beam.

The finite element method of analysis, using discrete elements referred to as matrix structural analysis, is the state-of-the-art method used to analyze continuous structures. The usual procedure in matrix structural analysis to account for partial fixity is to model a short or fictitious member with a low stiffness value. This

1 in cooperation with U.S. Dep. of Housing and Urban Development.

² Maintained at Madison, Wis., in cooperation with the University of Wisconsin.

DISTRIBUTION STATEMENT A

Approved for public releases
Distribution Unlimited

allows the input of some percentage of complete fixity but has the disadvantage of not being able to input the specific amount of joint slip since its relationship to the fictitious member stiffness is not known.

This study presents a computer analysis method and input user guidelines to determine internal forces, reactions and deflections of continuous beams with rotational slip at supports. Although developed specifically for two-span floor joist analysis and design, the method and computer program are applicable to any continuous beam structure.

Joist design is based on satisfying both stiffness and strength requirements. The stiffness criterion most commonly used is to limit maximum joist deflection in a floor system to span/360 when subjected to static live load of 40 pounds per square foot. The strength criterion limits bending stress to an allowable value based on species and grade of lumber. Design tables (3)³ are available for floor joist design for either simple or two-span continuous beams. The continuous beam tables assume full moment capacity over the entire span (i.e., no splices or other loss of continuity).

The National Association of Homebuilders (NAHB) (2) and American Plywood Association (APA) (1) investigated two-span continuous beams with splices near the inflection points. The splices were designed to transmit shear force since moments near the inflection points are assumed small. Splice slip was not considered.

8111 98 084

TIC FILE COPY

Italicized numbers in parenthesis refer to literature cited at the end of this report.

Spiice slip is due to the behavior of the mechanical fastening system. Nails (and truss plates) slip due to bending of the nail (tooth) and crushing of the wood. Many studies have established nonlinear load-slip behavior for nailed joints in single shear. When bolts are used they are installed in oversized holes: thus a

are used they are installed in oversized holes; thus a certain amount of movement occurs before loads are transmitted. Slip measurements related to design load levels are required for various splice configurations.

Splice slip affects both joist stiffness and strength. Slippage of a splice at an interior support will result in increased deflection throughout the span and in a decreased moment capacity at the support.

Matrix analysis (4) of continuous beams assumes supports either fixed or pinned. Intermediate end conditions are generally modeled by addition of a fictitious member with low stiffness or a rotational spring. Matrix analysis assumes each joint having discrete displacements corresponding to degrees of freedor.; thus no discontinuity in displacement can occur. Loads at or between joints and support settlements can be included in the analysis.

Theory

The philosophy of the analysis is illustrated in figure 1. Deflections due to loads are found by matrix method assuming no joint slip. An experimentally determined slip, $\theta_{\rm S}$, is input and allocated, $\theta_{\rm f}$, $\theta_{\rm f}$, to the adjacent right and and left spans. Deflections caused by adjacent slips are calculated and superimposed on the deflections due to loads. Member end actions and support reactions are calculated from the member deflections.

The member stiffness matrix assumes the member being subjected to lateral loads which induce bending moments and shear forces. The effects of shear are neglected; thus two degrees of freedom at each node,

vertical and rotational, are necessary. The degrees of freedom are numbered sequentially from left to right; thus the vertical translation of the left end is 1, the rotation 2, and those of the right end are 3 and 4, respectively, as shown in figure 2. Also shown is the member stiffness matrix with forces corresponding to unit displacements for each degree of freedom. The positive sign convention for the member forces and displacements are as shown, with vertical translation upward and rotation counterclockwise being positive.

The beam is modeled with nodes at points of support. changes in cross-section properties, and at any other point(s) where shear forces and bending moments, and/or vertical and rotational displacements are to be computed. Figure 3 shows node locations for an example two-span beam. It includes the support locations plus an arbitrary interior location, a distance x from the left support, where forces and displacements are to be calculated. Again, there are two degrees of freedom at each node; they are numbered sequentially starting at the left end of the beam. Member numbers (circled) are also sequential from the left end. Positive node forces and displacements are, as shown, upward and counterclockwise. The member stiffness matrices are superimposed, as shown symbolically, to form the structure stiffness matrix, [S].

The structure stiffness matrix is rearranged and partitioned related to the unknown displacements, D_d , and the known boundary displacements, D_s , representing support conditions:

$$[S] = \begin{bmatrix} S_{dd} & S_{ds} \\ ---- & S_{sd} \\ S_{sd} & S_{ss} \end{bmatrix}$$

where the subscript s refers to support degrees of freedom (with known displacements of zero or support settlement value) and d refers to degrees of freedom with unknown displacements.

Figure 1.—Superposition of load and slip deflected shapes.

(M 149 237)

(a) Member

$$\begin{bmatrix} S_{m} \end{bmatrix}_{i} = \begin{bmatrix} \frac{12EI}{L^{3}} & \frac{6EI}{L^{2}} & -\frac{12EI}{L^{3}} & \frac{6EI}{L^{2}} \\ \frac{6EI}{L^{2}} & \frac{4EI}{L} & -\frac{6EI}{L^{2}} & \frac{2EI}{L} \\ -\frac{12EI}{L^{3}} & -\frac{6EI}{L^{2}} & \frac{12EI}{L^{3}} & -\frac{6EI}{L^{2}} \\ \frac{6EI}{L^{2}} & \frac{2EI}{L} & -\frac{6EI}{L^{2}} & \frac{4EI}{L} \end{bmatrix}$$

(b) Member Stiffness Matrix

Figure 2.—Member degrees of freedom and stiffness matrix.

(M 149 238)

Node forces and/or support settlements (if any) are input with sign convention in figure 3b. Fixed end shears and moments corresponding to member loads are input with sign convention in figure 2a.

The unknown joint displacements, $\{D_d\}$, due to load, $\{A\}$, are found by:

$$\begin{cases}
D_d \\ = [S_{dd}]^{-1} \\ A \\ = A_j \\ - A_{fem} \\ - [S_{ds}] \\ D_s \\ \end{cases}$$

where $\{A\}$ is the general load matrix consisting of the specified joint loads, $\{A_j\}$, fixed end reactions due to between-the-joint loads, $\{A_{fem}\}$, and the forces, $[S_{ds}]\{D_s\}$, due to support settlement, $\{D_s\}$.

The known joint slip is allocated to adjacent spans based on compatibility and equilibrium as indicated in figure 4 in which moments and rotations are shown in the positive direction. The effects of spans other than the adjacent spans are neglected. The sign convention for the slip rotation is that the slip angle is measured from the tangent to the elastic curve in the right span to the tangent of the elastic curve in the left span with counterclockwise rotation being positive.

From figure 4a, the compatibility equation is:

$$\theta_{S} = \theta_{\ell} - \theta_{\Gamma} \tag{1}$$

where $\theta_{\rm S}$ is the slip rotation, and $\theta_{\rm f},\,\theta_{\rm f}$ are the rotational allocation of the slip to the left and right adjacent spans, respectively.

From figure 4b, the moment equilibrium equation at the interior support is:

$$M_f = -M_r \tag{2}$$

where M_{ℓ} , M_{r} are the moments corresponding to θ_{ℓ} and θ_{r} . From standard beam theory, the relationship between moment and rotation is:

$$M_{\ell} = \frac{3E_{\ell}I_{\ell}\theta_{\ell}}{L_{\ell}}$$
 (3a)

$$M_r = \frac{3E_r I_r \theta_r}{L_r}$$
 (3b)

where E is the modulus of elasticity, I the moment of inertia, and L the length of the left and right spans (subscripts 1, r), respectively. The relationship is applicable to members having a rotation at one end of the member.

(c) STRUCTURE STIFFNESS MATRIX

Figure 3.—Structure degrees of freedom and stiffness matrix.

(M 149 239)

Figure 4.—Joint slip compatibility-equilibrium relations.

(M 149 240)

The state of the s

Substituting equations (3) into (2) yields a relationship between θ_{ℓ} and θ_{Γ} , and substituting this into equation (1) results in the following allocation of slip to adjacent spans (assuming $E_{\Gamma} = E_{\ell}$):

$$\theta_{\ell} = \theta_{S} \left[\frac{L_{\ell} I_{r}}{L_{\ell} I_{r} + L_{r} I_{\ell}} \right]$$

$$\theta_{r} = \theta_{S} \left[\frac{L_{r} I_{\ell}}{L_{\ell} I_{r} + L_{r} I_{\ell}} \right]$$
(4a)

To determine displacements due to a known slip, the continuous beam is separated into two structures at the support where the slip occurs. The slip allocations, θ_{I} and θ_{T} , are applied as support displacements to each side of the separated structure. Deformations are then determined by matrix analysis.

The member end displacements due to slip are superimposed on the displacements due to loads. Member end displacements multiplied by the member stiffness matrix summed with the fixed end moments due to load result in member end forces. Adjacent member end forces combined with applied joint forces determine support reactions.

Procedure

The Fortran program using this theory is given in appendix A. The program is intended to be as complete as possible so that it can be easily modified for future research; it is not a production tool and no effort has been made to make it as efficient as possible. The units used must be compatible; the example in this paper uses input lengths in inches, forces in pounds, moments in inch-pounds, slip in radians, modulus of elasticity in pounds per square inch, and moment of inertia in inches*. Output is in the same units.

Figure 5.—Schematic representation of the makeup of computer deck. (M 149 241)

The program is limited to one slip per member, and no slip at either the first or last support. Slips at adjacent joints are permissible provided each is indexed to a separate adjacent member. The program is arbitrarily limited to a maximum of 10 elements which is considered adequate for most 2- or 3-span floor joist systems (extra nodes may be included between supports). For larger problems, this limitation can be removed by modification of the dimension statement.

The degrees of freedom are numbered sequentially from the leftmost support with the vertical translation first and the rotation second. Sign conventions have been previously defined and are shown in the positive direction in figures 2, 3, and 4.

The Fortran program is stored on both tape and punched cards on the FPL/MACC system. Input data required are described in table 1. The command sequence for the FPL/MACC system to access the tape is given in table 2; that for the punched deck is shown in figure 5.

The following example illustrates both input data required and output generated.

Example

The two-span beam of figure 3a is assumed to have a splice at B which slips +0.00432 radian when loaded. Other values for this example are:

$$W_1 = 50 \text{ ib/ft} = 4.16 \text{ ib/in}.$$
 $I_1 = I_2 = 20.8 \text{ in.}^4$

$$L_1 = 12 \text{ ft } - 0 \text{ in.} = 144 \text{ in.}$$
 $W_2 = 10 \text{ lb/ft } = 0.833 \text{ lb/in.}$

$$E_1 = E_2 = 1,700,000 \text{ lb/in.}^2$$
 $L_2 = 9 \text{ ft } -0 \text{ in.} = 108 \text{ in.}$

Shear and moment diagrams, and deformed shape for this partially continuous beam example are required.

Table 1.—Data cards

umber of cards equired'	Information required ²	Input date In columns numbered	Fortran format	
1	a. NM = Total number of members	1 through 3*	13	
	b. NS = Total number of supports corresponding to degree of freedom numbers (i.e., NS = 2 for shear and	4 through 6°	13	
	moment at fixed support)			
	c. NF = Total number of joint slips	7 through 9°	13	
	d. NA = Total number of degrees of	10 through 12°	13	
	freedom corresponding to	-		
	joint loads (i.e., $NA = 2$			
	for joint with applied			
	vertical load and moment)			
NS	For each card (support):			
	a. Structure degree of freedom number	1 through 3*	13	
	b. Support settlement (in. or radians)	4 through 13	F10.6	
NM	For each card (member):			
	a. Member number	1 through 3*	13	
	b. Modulus of elasticity (lb/in.²	4 through 13	F10.0	
	c. Moment of inertia (in.4)	14 through 21	F8.2	
	d. Length (in.)	22 through 28	F7.2	
	e. Left end fixed end shear due to member loads (lb)	29 through 37	F9.2	
	f. Left end fixed end moment (inib)	38 through 46	F9.2	
	g. Right end fixed end shear (lb)	47 through 55	F9.2	
	h. Right end fixed end moment (inlb)	56 through 64	F9.2	
NA	For each card (joint load):			
	Structure degree of freedom number corresponding to ioint load	1 through 3°	13	
	b. Joint load (lb or inlb)	4 through 13	F10.2	
NF	a. Member number (may be either	1 through 3*	13	
•••	left or right span adjacent to slip)	i illiough o	10	
	b. Member degree of freedom number (either 2 or 4 corresponding to member selected in "a")	4 through 6*	13	
	c. Structure degree of freedom	7 through 9*	13	
	number	-		
	d. Slip (radians)	10 through 19	F10.6	

¹ Cards must be sequenced in this order.

Table 2.—Tape command sequence @RUN... @PASS... @PASS...
@CAT HUD*CONTINUBEAM.
@ASG, AX HUD*CONTINUBEAM.
@ASG, TH DIMEN*LUMBER., U9H, 7639
@TGET DIMEN*LUMBER., HUD*CONTINUBEAM.
@XQT HUD*CONTINUBEAM.SLIP Data as per table 1 @FIN

Accession For NTIS GRA&I DTIC TAB Unannounced. Justification_ Distribution/ Availability Codes Avail and/or Dist Special

² Zero values may be entered by blanks.

* Values must be right-adjusted.

The beam is modeled with joints at points of support and at other arbitrary locations deemed necessary to define the shear and moment diagrams and the deformed shape. For illustrative purposes, only one arbitrary location 5 feet (60 in.) from the left support (x = 60 in.) is selected. Thus the beam is modeled with structure degrees of freedom and members numbered sequentially from the left as in figure 3b.

The input data corresponding to table 1 are:

Card 1

NM = 3

NS = 3 (corresponds to structure degrees of freedom 1, 5, and 7)

NF = 1 (corresponds to structure degree of freedom 6)

NA = 0 (no joint loads, only member loads)

Cards 2, 3, and 4, respectively
Structure degree of freedom = 1, 5, and 7,
respectively
Support settlement = 0 (all cards)

Cards 5, 6, and 7, respectively

Member number = 1, 2, and 3, respectively

Modulus of elasticity = 1,700,000 lb/in.² (all cards)

Moment of inertia = 20.8 in.⁴ (all cards)

Length = 60, 84, and 108 in., respectively

Left end fixed end shear for member 1 =

$$+\frac{W_1X}{2} = \frac{50 \times 5}{2} = + 125.0 \text{ lb}$$

Left end fixed end moment for member 1 =

$$+\frac{W_1X^2}{12} = \frac{50 \times 5^2 \times 12}{12} = + 1250.0 \text{ in.-lb}$$

Fixed end reactions for right end and for other members similarly found.
(Note, sign convention as per figure 2; thus right end fixed end moment is negative.)

No NA cards (NA = 0)

Card 8 (NF = 1)

Member number of left adjacent span = 2 (alternately, member 3, the right adjacent span could be selected)

Member degree of freedom (figure 2a) = 4 (alternately, member degree of freedom = 2 could be selected to correspond to member 3) Structure degree of freedom (figure 3b) = 6 Slip = + 0.00432 radian

The output forces and displacements are given in appendix B to illustrate the output format (which is referenced to the structure degree of freedom numbering). Joint displacements are not given directly since the slip creates a discontinuity; member end

displacements to the left and right of the joint are given.

The results are plotted as case II in figure 6. Results for simply supported and fully continuous beams, found by standard structural analysis, are given as cases I and III for comparison. As expected, the behavior of the partially continuous beam is bounded by the simple and fully continuous cases. The displacement at x = 5 feet is 0.6318 and 0.4126 inch for the simply supported, and fully continuous beams, respectively. The partially continuous beam results in a deflection of 0.4738 inch. Use of a joint at B reduces the simply supported deflection by about 25 percent. The negative moment over the center support is reduced from the fully continuous value of 558 to 406 foot-pounds for the partially continuous beam; however, the corresponding positive moment at x = 5 feet is increased from 643 to 706 footpounds. This is still about 20 percent less than the simply supported positive moment. Figure 7 details the discontinuity of the deformed shape at support B.

Program Alteration

The program is arbitrarily limited to 10 elements (NM = 10); the corresponding number of joint degrees of freedom is 22 (2NM + 2). Dimensioned arrays have values of 10, 22, or 4 corresponding to number of elements, number of joint degrees of freedom or number of degrees of freedom per element. To increase the number of elements, change the dimension statements in the first six cards of the source program as follows:

- Dimensions of value 10 are increased to the new number of elements, NM.
- b. Dimensions of value 22 are increased to a value = 2NM + 2.
- c. Dimensions of value 4 are unchanged.
- d. Dimensions of the array called SCRACH are increased to 3 x (2NM + 2).

Figure 6.—Example-continuous beam with splice slip at support.

(M 149 150)

Figure 7.—Example-splice slip detail at support.

(M 149 316)

Appendix A

CONTRACTOR STATEMENT OF MANY TO A STATE OF THE PROPERTY OF THE

Computer Source Program

```
MATRIX ANALYSIS OF CONTINUOUS BEAMS
  1 C
  2 C
                       MAXIMUM NUMBER OF SPANS = 10
                       DIMENSION JNS(22).DS(22).JNSS(22).INS(22).AJ(22).SR(22).DDD(22). T
                     1(22)_{*}B(10)_{*}V(10)_{*}W(10)_{*}X(10)_{*}SM(10,4,4)_{*}E(10)_{*}XI(10)_{*}XL(10)_{*}AM(10,4,4)_{*}E(10)_{*}XI(10)_{*}XL(10)_{*}AM(10,4,4)_{*}E(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}XI(10)_{*}
  4
  5
                     24), AMF(10.4), COOR(22), XLS(10), S(22,22), A(22), JND(22), RR(22,22), R(2
                     32.22).SDD(20.20).SSD(22.22).SDS(22.22).SSS(22.22).AS(22).AD(22).C(
  6
                     422),Y(22),SDDI(20,20),SCRACH(60,60),DD(22),D(22),SLIP(22),SLIP1(22
  8
                     5).SLIP2(22).DL(10.4).DR(10.4).AMM(10.4).AJJ(22)
  9 0
10 C
                        INPUT LATA
11
                       READ(5,1)NM,NS,NF,NA
12
                       DO 5 I=1.NS
13
                       READ(5,2) JNS(I), DS(I)
14
                  5 \text{ JNSS}(I) = \text{JNS}(I)
15
                  1 FORMAT(413)
16
                  2 FORMAT(13,F10.6)
17 C
18 C
                        INITIALIZE CONDITIONS
19
                       NIF=0.
                       NSSJJ=0.
20
21
                       MM=MM
                       NSS=NS
22
23
                       DO 10 I=1,22
24
                        INS(I) = 0.
25
                       AJJ(I)≈0.
26
                       AJ(I) = 0.
27
                       SR(I) = 0.
28
                10 DDD(I)=0.
29 C
30 C
                       MEMBER STIFFNESS MATRIX
31
                       DO 15 J=1.NM
                       READ(5,3)M,E(M),XI(M),XL(M),(AM(M,I),I=1,4)
32
33
                  3 FORMAT(I3,F10.0,F8.2,F7.2,4F9.2)
34
                       B(M) = 6.*E(M)*XI(M)/XL(M)**2.
35
                        V(M) = 2.*B(M) / XL(M)
36
                       W(M) = 4. *E(M) *XI(M) /XL(M)
37
                       X(M) = W(M)/2.
38
                       SM(M, 1, 1) = V(M)
39
                       SM(M, 2, 2) = W(M)
40
                       SM(M,3,3) = V(M)
41
                       SM(M, 4, 4) = W(M)
42
                       SM(M, 1, 3) = -V(M)
43
                       SM(M,3,1) = -V(M)
44
                       SM(M, 2, 4) = X(M)
45
                       SM(M, 4, 2) = X(M)
46
                       SM(M, 1, 2) = B(M)
47
                       SM(M, 1, 4) = B(M)
48
                       SM(M,2,1) = B(M)
49
                       SM(M,4,1) = B(M)
50
                       SM(M,3,2) = -B(M)
51
                       SM(M, 3, 4) = -B(M)
52
                       SM(M, 2, 3) = -B(M)
53
                15 SM(M,4,3) = -B(M)
54
                       DO 16 J=1,NMM
55
                       DO 16 L=1.4
                16 AMF(J,L) *AM(J,L)
56
57 C
58 C
                       STRUCTURE SPAN LENGTHS
59
                       NJ=2*NM+2
```

```
60
           LN=LON
 61
           COOR(1) = 0.
 62
           DO 20 I≔3.NJ.2
 63
           K = (1-1)/2
 64
        20 COOR(I)=COOR(I-2)+XL(K)
 85
           MSL=MS-1
 86
           I = 1
 67
           DO 35 J=3.NJ.2
 68
           90 30 K=2.NS
 69
           IF(J.EQ.JNS(K))GO TO 25
 70
           GO TO 30
 71
        25 JJ=JNS(K-1)
           XLS(I) = COOR(J) - COOR(JJ)
 72
 73
           I = I + 1
 74
           GO TO 35
 75
        30 CONTINUE
 76
        35 CONTINUE
 77 C
 78 C
           STRUCTURE JOINT LOADS
 79
           IF (NA) 50,50,40
 80
        40 DO 45 I=1.NA
 81
           READ(5.4)NAM.AJ(NAM)
 82
         4 FORMAT(13,F10.2)
 83
           (MAM) LA≃ (MAM) LLA
84
        45 CONTINUE
 85
        50 CONTINUE
86 C
87
       999 CONTINUE
88 C
89 0
           STRUCTURE STIFFNESS AND LOAD MATRIX
90
           DO 55 I=1.22
91
           A(I)=0.
 92
           DO 55 J=1.22
 93
        55 S(LJ)=0.
 94
           DO 75 I=1.NM
 95
           M= I
 96
           M1 = 2 * M-1
 97
           M2-2:41
 98
           M3 = 2 \times M + 1
 99
           M4=28M+2
100
           M=M+NSSJJ/2
101
           S(M1,M3) = SM(M,1,3)
102
           S(M1,M4) = SM(M,1,4)
103
           S(M2,M3) = SM(M,2,3)
104
           S(M2.M4) = SM(M.2.4)
195
           S(M3,M1) = SM(M,3,1)
106
           S(M3,M2) = SM(M,3,2)
107
           S(M4,M1) = SM(M,4,1)
108
           S(M4,M2) = SM(M,4,2)
109
           S(M1,M1)=S(M1,M1)+SM(M,1,1)
110
           S(M1,M2) = S(M1,M2) + SM(M,1,2)
111
           S(M2.M1) = S(M2.M1) + SM(M.2.1)
112
           S(M2,M2) = S(M2,M2) + SM(M,2,2)
           IF(I-NM)60.65.70
113
114
        60 \text{ S}(M3.M3) = \text{S}(M3.M3) + \text{SM}(M.3.3)
           S(M3.M4) = S(M3.M4) + SM(M.3.4)
115
116
           S(M4.M3) = S(M4.M3) + SM(M.4.3)
117
           S(M4,M4) = S(M4,M4) + SM(M,4,4)
           GO TO 70
118
        65 \text{ S}(M3.M3) = \text{SM}(M.3.3)
119
           S(M3,M4) = SM(M,3,4)
120
121
           S(M4.M3) = SM(M.4.3)
```

```
122
           S(M4,M4) = SM(M,4,4)
       70 CONTINUE
123
124
           A(MI) =A(MI) -AM(M, I) +AJ(MI)
125
           A(M2) = A(M2) - AM(M.2) + AJ(M2)
           A(M3) = A(M3) - AM(M_23) + AJ(M3)
126
127
           A(M4) = A(M4) - AM(M, 4) + AJ(M4)
       75 CONTINUE
128
129 C
130 C
           REARRANGE STIFFNESS MATRIX FOR JOINT RESTRAINT
131 C
           DETERMINE JND
132
          1 = 1
          PO 95 I=1.NJ
133
134
           DO 90 K=1.NS
135
           IF(I-JNS(K))80.95.80
136
       80 CONTINUE
137
           IF(K-NS)90,85,90
138
       85 JND(L)≈I
139
           L=L+1
140
       90 CONTINUE
141
       95 CONTINUE
           MOVE MERTICAL COLUMNS
142 C
143
           ND=NJ-NS
144
           DO 100 I=1.NJ
145
           DO 100 J=1.ND
1.46
          KK≃JND(J)
      100 PR(I.J) =S(I.KK)
147
148
          DO 105 I=1.NJ
149
           DO 105 J=1.NS
150
          KK=JNS(J)
151
      105 RR(I,J+ND) = S(I,KK)
152 C
           MOVE HORIZONTAL ROWS
153
           DO 110 J=1.NJ
154
           DO 110 I=1.ND
155
          KK = JMD(I)
      110 R(I,J) =RP(KK.J)
156
           DO 115 J=1.NJ
157
158
           DO 115 I=1.NS
159
          KK=JNS(I)
      115 R(I+ND.J)=RR(KK.J)
160
161 C
           TO SUBDIVIDE MATRIX
           DO 120 I=1.ND
162
163
           DO 128 J=1.ND
164
      120 SDB(I.J)=R(I.J)
165
           DO 125 I=1.NS
166
           DO 125 J=1.ND
167
      125 SSD(I,J)=R(I+ND,J)
168
           DO 130 I=1.ND
169
           DO 130 J=1.NS
170
      130 SDS(I.J) = R(I.J+ND)
171
           DO 135 I=1.NS
           DO 135 J=1.NS
1 12
173
      135 SSS(I.J) ≈R(I+ND,J+ND)
174 C
           REARRANGE LOAD MATRIX
175
           DO 140 I=1.ND
          K=JND(I)
176
177
      140 AD(I) =A(K)
178
           DO 145 I=1.HS
179
          fr=JH5(1)
      145 AS(I)-A(F)
180
181 C
182 C
          TO FIND JOINT DISPLACEMENTS
183
          DO 150 I=1.HD
```

```
184
           \mathcal{E}(1) = \emptyset.
185
           DO 150 K=1.NS
      150 C(I)=C(I)+SDS(I,K)*DS(K)
186
          DO 155 I=1.ND
187
188
      155 Y(I) = AD(I) - C(I)
          CALL MTINV2(SDD.SDDI.ND.20.20.1GEN1.0.$610.SCRACH)
189
190
           DO 160 I=1.ND
191
          I(I) = \emptyset.
192
          DO 160 K=1.ND
193
      160 DD(I)=DD(I)+SDDI(I,K)*Y(K)
194
          DO 162 I=1.ND
195
           LL22M+(I) dML=L
196
          DDD(J) \approx DD(I) + DDD(J)
197
      162 D(J) ⇒DD(I)
          DO 165 I=1.NS
198
          K=JNS([)+NSSJJ
199
200
          DDD(k) = DS(I) + DDD(K)
201
      165 D(K)=DS(I)
202 0
203 \, C
           IF SLIP AT SUPPORT OCCURS
204
           IF(NF)340.340.170
205
      170 CONTINUE
          DO 175 I=1.NMM
206
207
          DO 175 J=1.4
208
           00 175 K=1,22
209
           AM(I.J) = 0.
210
           AJ(K) = 0.
211
      175 DS(K)=0.
           IF(NIF-2*NF)180.340.340
212
213
      180 MIF=MIF+1
214
          KNIE=NIE/NE
          GO TO (190,275), KNIF
215
216
      190 CONTINUE
217
          READ (5.6) M. KKK, NFM, SLIP (NFM)
218
        6 FORMAT(313,F10.6)
219
           INS(M) =NFM
220
          NSJ=2*((NFM+1)/2)-1
221
          L=0
222
           DO 195 I=1.NSS
223
           IF(JNSS(I).EQ.NSJ) GO TO 200
224
           IF(JNSS(I).E0.NFM) G0 T0 200
      195 L=L+1
225
      200 GO TO(210.205.210.205).KKK
226
227
      205 SLIP1(NFM)≈SLIP(NFM)*XLS(L)*XI(M+1)/(XI(M+1)*XLS(L)+XI(M)*XLS(L+1)
228
          10
229
           SLIP2(NFM) =SLIP1(NFM) -SLIP(NFM)
230
      210 CONTINUE
231 C
          FIND NUMBER OF JOINTS AND MEMBERS IN DIVIDED STRUCTURE
232 0
233
          NLJ=2*((NFM+1)/2)
234
          NLM=(NLJ-2)/2
235
          HRM=NMM-NLM
236
          NRJ=2*NRM+2
237 0
           DETERMINE NUMBER OF SUPPORTS IN LEFT SPANS
238
          L =Ø
239
          DO 220 I=1.NLJ
240
          DO 220 J=1.NSS
241
          JF(I-JNSS(J))220,215,220
242
      215 L=L+1
243
      220 CONTINUE
244
          DO 225 I=1.NSS
245
           IF (JNSS(I).E0.NSJ)G0 TO 230
246
           IF (THSS(I).EQ.NFM)GO TO 230
```

The second secon

```
242
       235 CONFINE
248
           60 10 335
149
       330 LaL-1
25/19
       235 CONTINUE
251
           -GO 18 (250.245.250.245).KKK
353
       245 HLB: LH2
253
            \pm 65 \times 10.5 - 11 = 2 \times ((NEM-1) \times 2) + 1
35-4
            Jiss JLSDENEM
255
            TOP (MED) (=SLIP1(MFM)
355
       250 CONTINUE
257
258
259
269
361
           用用用点针
           MIRHLI
           HS=HLS
            60 70 999
       275 CONTINUE
262 C
            DETERMINE NUMBER OF SUPPORTS IN RIGHT SPANS
263
           KMF11=2#1 (NFM-1)/2)+1
264
           MSSJJ=NSJ-1
265
           L≈Đ
05.5
            DO 285 I=KNFM.NOJ
367
            DO 395 J=1.NSS
368
            IF(I+JMSS(J))285.280.285
269
       290 ! =L+!
276
271
272
273
       285 CONTINUE
            DO 390 I=1.NSS
            IF(JMSS(I).EQ.NSJ)GO TO 295
            IF JUSS (1) .EO.NFM) GO TO 295
27.4
       290 CONTINUE
           GO 111 300
2.6
2.7
2.75
2.79
2.80
      295 L=L-1
      -300 GO TO (325.310.325.310).KKK
      310 MRS=L+2
            JNS(2)=NFM-NSSJJ
            JNS(1)=MFM-1-NSSJJ
281
           DS(3) = SLIP2(NFM)
           LM=3
            DO 320 I-1.NSS
            IF (JHSS(I).GT.NFM)G0 TO 315
254
285
284
287
           GO TO 320
      315 LM=LM+1
            JHS:LM:=JHSS(I)-MSSJJ
       320 CONTINUE
ing q
       335 CONTINUE
و ۾ ڪري
           HIT LEHETT
201
233
           HISHEI
           HS-JF 5
293
394
            60 11 999
       740 CONTINUE
1000
            TO RUPERIMPOSE DEFLECTIONS AND FIND MEMBER END FORCES
2000
           INU 345 M=1.NMM
194
294
           111 = 1 +11-1
           112 = 5 411
TIME
           T13 - 2 41 (+ 1
504
           34 金田紀
            \{(1,1),(1,1)=[(DD)(M1)\}
30.2
303
            DUCTED: (M2)
7.61.4
           DF (11.3) = DDD (113)
305
       345 [P(M.4) = DDD (M4)
           100 S95 M±1.4MM
306
366
            1F (HF) 350, 395, 350
       350 4 - IHS (11)
308
           1111-2411-1
30 B
```

```
310
          M2=2+H
311
          M3 = 2 + M+1
312
          M4=3+9+3
           IFH .GE.MI.AND.K.LE.M4)GO TO 355
313
          GO TO 395
314
      355 FR = F - 2411+2
315
          GO TO (395,360.395.370).KK
316
317
      360 DL(M.2)=DL(M.2)=SLIP1(H)
318
           IF (M-1)365.395.365
319
      365 DP(M-1.4)=DR(M-1.4)-SLIP2(K)
320
          GO TO 395
321
      370 DR(M.4) = DR(M.4) - SLIP2(K)
322
           IF (M-NMM) 375.395.375
323
      375 DL (M+1,2)=DL (M+1,2)-SLIP1(K)
324
      395 CONTINUE
325
          DO 400 H=1.NMM
          DO 400 J=1.4
326
327
      400 AMM(H.J)=SM(M.J.1)*DL(M.1)+SM(M.J.2)*DL(M.2)+SM(M.J.3)*DR(M.J.3)*DR(M.3)+SM(
328
          IM.J.40*DR(M.40+AMF(M.J)
329 C
330 0
          TO DETERMINE SUPPORT PEACTIONS
331
          T(1) =ANN (1.1) -AJJ(1)
           T(2) = AHH(1.2) - AJJ(2)
332
333
           IF(NMM.E0.1)GO TO 410
334
          NMTIL =NIMM= 1
335
          MMMT=2*MMM
          DO 405 M=1.NMML
336
337
          DO 405 I=3.NMMT.2
           T(I) = AMM(M,3) + AMM(M+1,1) - AJJ(I)
338
339
      405 T(I+1) = AMM(M,4) + AMM(M+1,2) - AJJ(I+1)
340
      410 T(2*NMM+1) = AMM(NNM, 3) - AJJ(2*NMM+1)
           T(2*MMM+2)=AMM(HMM.4)-AJJ(2*NMM+2)
341
342
          DO 415 I=1.NSS
343
          K=JNSS(I)
344
      415 SR(I) =T(K)
345 0
          PRINT OUTPUT
346 C
347
          URITE(6.500)
      500 FORMAT(11.32X, MATRIX ANALYSIS OF CONTINUOUS BEAM1,////)
348
349
          WRITE(6.505)
      505 FORMAT(1X.'MEMBER'.5X.'LENGTH',9X.'E',9X.'I'.4X.'LEFT SHEAR'.3X.'L
350
          teft Moment'.3%, 'Right Shear',3%, 'Right Moment',//)
351
352
          DO 515 M=1.NMN
353
          WPITE(6.510:M.XL(M).E(M).XI(M).(AMM(M.J).J=1.4)
354
      510 FORMAT(1M.I3.8M.F5.0.6%,F9.0.1%,F7.1,4%,F7.1.5%,F8.1.8M,F7.1,6%,F8
355
         1.1.
      515 CONTINUE
356
357
          WPITE(6.520)
      520 FORMATURALMAIDEGREE OF FREEDOM1.21%, VERTICAL DISPLACEMENT1.21%, 1P
358
359
         10TATION: < )
360
          MPITE (6.525)
      525 FORMAT (42%, "LEFT", 6%, "RIGHT", 22%, "LEFT", 6%, "RIGHT")
361
362
          WRITE(6.530)
363
      530 FORMAT(43%,10F1,9%,10F1,24%,10F1,9%,10F1)
364
          WPITE(6.535)
365
      535 FORMAT(41%. JOINT1.6%. JOINT1.21%. JOINT1.6%. JOINT1.//)
366
           I = 1
          WPITE(6.540) L.DL(1.1)
367
      540 FORMAT(7X.13.38X.F10.5)
368
369
          NJJ=HINH-I
370
          DO 550 H=1.HJJ
371
           I = I + 2
          WRITE(6.545)[.DR(M.3).DL(M+1.1)
372
```

```
373
      545 FORMATICAX.13.26X.F10.5.2X.F10.5)
374
      550 CONTINUE
375
           1 = [+2
376
           UPITE/6.555) I.DR(NMM.3)
377
      555 FORMAT(7%, 13, 26%, F10.5)
370
           1 = 2
379
          URITE:6.560) I.DL(1.2)
      560 FOFMAT: 7X. I3.75%.F10.5)
380
381
           DO 570 M=1.HJJ
382
           I = I + 2
383
           WRITE(6.565)[.DR(M.4).DL(M+1.2)
384
      565 FORMAT(7X.13.63X.F10.5.2X.F10.5)
385
      578 CONTINUE
386
           I = 1 + 2
387
          WEITE(6,575) I.DR(NMM,4)
388
      575 FORMAT(7%.I3.63%.F10.5)
389
           WRITE(6.580)
      580 FORMAT(x/.1%.*DEGREE OF FREEDOM*.7%.*REACTION*.7%.*MOMENT*.//)
390
391
          DO 605 I=1.NSS
393
          } =JN35+I+
393
          hh = (k+1) (2
394
           11:172
395
          396
      -585 LONTINUE
337
          WRITE(6.590):.SP(I)
390
      590 FORMHITTI'.13.13K.F9.2)
333
        60 TO 605
      595 JOHTINUE
400
          WRITE(6.6AA)W.SP(I)
401
400
      600 FURMAT(7%, 13, 27%, F9.2)
463
      605 CONTINUE
49.1
      610 CONTINUE
495
          STOP
406
           EHD
                           *** STATEMENT NUMBERS ***
           1 1
                 *15
  2
           13
                 *16
            30
                 *33
  4
            81
                 +82
  5
           12
                 +14
 6
           217
                *218
 10
            23
                 *28
 15
            31
                 453
 15
           54
                  55
                        *56
 20
            62
                 +64
 25
                 471
            69
                  70
                        175
 30
            tión.
 35
           67
75
                  74
                        576
 40
                 +811
 45
            86
                 +84
 56
            79
                 ¥85
 55
            90
                  93
                        +93
 60
           113
                *114
 65
           113
                +119
 70
                       *123
           113
                 113
 75
           94
                +128
           175
 80
                *136
 \mathfrak{g}^{\mathbf{c}}
           137
                +138
 90
           134
                 137
                       +140
```

```
95
             133
                     135
                          +1.11
1000
             144
                           +147
                     145
165
             148
                     149
                           +151
            153
110
                     154
                           4156
             157
115
                     158
                           +160
120
             162
                           +164
                     163
125
             165
                     166
                           +167
130
             168
                     169
                           +170
             171
                     172
135
                           €173
                   *177
             175
1-49
1.45
             178
                   +188
150
             183
                    185
                           +186
155
             187
                    *188
160
             190
                    192
                           *193
162
             194
                   ¥197
             199
165
                    #2₽1
                   *205
170
             204
175
             206
                    207
                            208 *211
180
             212
                   *213
             215
190
                   *216
195
             222
                   *225
             323
200
                    324
                           #226
             226
J:05
                   *227
210
             226
                   *230
215
             341
                   *242
220
225
230
             339
                    240
                            241
                                   *243
             344
                   *247
             245
                    246
                           *249
235
             248
                   *250
345
             251
                   *252
             351
                    +256
250
275
             215
                    *261
280
             368
                   *269
285
290
295
300
             365
                    267
                            268
                                   *270
             271
272
275
                   #274
                   273
*277
                           *276
                   *278
310
             284
315
                   *286
                    285
320
             283
                           *288
725
             277
                    *289
3.40
             284
                    212
                           *294
3.45
             297
                   *305
350
             307
                   *308
355
             313
                   *315
360
             316
                   *317
365
             318
                   *319
370
             316
                   *321
7.5
             322
                   *323
7:45
                                                            322 *324
                                                    320
             306
                     307
                             314
                                    316
                                            318
             325
                           *327
400
                     326
1175
             336
                           *339
                     337
             333
410
                    *340
417
             342
                    +344
5.10
             3.47
                    +348
-tic
             3.49
                    +358
             353
្រូវពិ
                    +354
5.15
             2\, \epsilon_{j,\,j}
                    +356
e_{j} \cdot \ldots_{j}
             75,7
                    +358
\sigma_i = \sigma_i
             उहात
                    +361
5.00
             265
                    1363
36.1
                    +365
\sigma_{i,i,\{j\},j}
             BEG!
                    +368
```

545 550 555 560 565 566 566 566 566 566 665 669	372 +373 370 +374 376 +377 379 +380 383 +384 381 +385 387 +388 389 +390 395 +396 397 +398 395 +400 401 +402 391 399 189 +404 +87 260	*403 293									
			***	< VARI	ABLES	***					
A AD	3 +49 3 +17)		*125	*126	*127	177	180				
AJ AJJ AH AME	3 +2) 3 +2; 3 +3; 3 +5)	6 *81 6 *83 2 56	83 331 124	124 332 125	125 338 126	126 339 127	127 340 *209	*210 341			
ÁDD	3 ∗327	7 331	332	338	339	340	341	353			
AS B C COOP D	3 *189 3 *39 3 *189 3 *6 3 *197	4 35 4 *186 1 *64	46 188 72	47	48	49	50	51	52	53	
DD DDD DL DR DS	3 *19 3 *29 3 *30 3 *30 3 *1	1 *193 8 *196 2 *303 4 *305 3 186	196 *200 *317 *319 200	197 302 *323 *321 201 353	303 327 327 *211	304 367 372 *255	305 372 376 *281	379 383	383 387		
E I	3 #33 #12 #13 64 #66 135 138 #162 164 179 189 196 197 241 #244 #337 338 #378 379	3 14 5 72 8 *144 4 *165 0 *183 7 *198 4 245 8 339	36 #23 #73 147 167 184 199 246 #342 383	24 *80 *148 *168 186 200 *266 343 *386	25 *90 151 170 *187 201 268 344 387	26 91 *154 *171 188 *206 *271 *366 *391	27 93 155 173 *190 209 272 367 392	28 *94 156 *175 191 *222 273 *371 397	*32 95 *158 176 193 223 *283 372 401	*62 113 159 177 *194 224 284 *375	63 *133 160 *178 195 *239 287 376
l Ins	3 *24 *31 *54 150 15 *172 173 327 353	4 *219 4 56 1 *153 3 *195	308 *67 156 196	*300 *157 197	72 160 *207	*92 *163 209	93 164 *240	*145 *166 241	146 167 *267	147 *169 268	*149 170 *336
JHS JHD JHS	+71 72 3 *138 3 *10 +279 *288	3 146 3 14	155 69	176 71	195 135	150	159	179	199	*253	+254
INGG	3 *14 343 392	4 223	224	241	245	246	268	272	273	284	287
KJ	*63 67 *185 186 315 317 *394 395	4 *68 5 *192 7 319	69 193 321	71 *199 323	*134 200 *343	135 201 344	137 *208 *392	*176 210 393	177 211 394	*179 *308 397	180 313 401

!	* 1 lo	147 226	+156 251	151 277	+155	150	*159	160	*315	316	¥393	395
1 (1811 1 (1811) 1	7, 51 7, 14 7, 15 7, 15	066 215 86	+132 +376	138 278	+139	*221	*2?5	227	*238	* 242	+249	252
1.11 (1	A STATE	#260 #306 84 46	70.0 787 35	36 48	37 49	38 50	39 51	40 52	41 53	42 *95	43 96	44 97
	1.0 1.0 1.0 7.0	99 111 126 304	+100 +12 +137 -385	101 114 *217 *306	102 115 219 308	103 116 227 309	104 117 *297 310	105 119 298 311	106 120 299 312	107 121 300 315	108 122 301 317	109 124 302 318
	719	321	722 707	333	*325	327	*336	338	339	* 352	353	*370
111	772 706 313	₩381 101	383 102	105	107	109	110	111	124	*298	302	*309
110 113	437 198	103 101	184 183	106 105	198 196	110 114	111 115	112 116	125 119	*299 120	303 121	*310 126
11.1	#3001 #99 #301	384 182 385	*311 184 *312	107 313	108	115	116	117	120	121	122	127
HTIMW2	13.4	79	811									
probl fris	+61 +147 175	83 145 183	151 187	154 189	160 190	162 192	163 194	166	167	168	170	173
neF peFity	+11 +273	204 219 279	212 270 280	314 324 281	307 227 284	229	203	246	253	254	255	263
1 17 14 3	+ -	212 60	4213 62	214 67	133	143	144	148	153	157	*258	#291
ξι'' r, 7 **[[t'	*369 +035 +234	370 334 235	381 339 257	258								
* ii 1	+152 +11 +11 +11	253 21 54 352	254 31 206 369	355 59 335 376	259 94 297 38 <i>7</i>	113 306	*257 322	*290 325	333	334	335	340
of Male Comment No. 1	+ 334 + 735 + 447	336 337 366										
The trace	* 7 _{4.}	294 376 93	290									
1.		12 12 12 123	.22 178 145	65 195 164	68 198 272	134 #359	137 *292	143	149	158	165	169
to District		1 (2) 188	j 10 105	244 199	267 *264	271 279	283 280	342 287	391			
F F F		+156 +147	+ [54] + 154	164 156	167 160	170	173					
5	41 I	+33 +11.2	+101	*102 +115	+1163 +116	*194 +117	*105 *119	*186 *128	*107 *121	*108 *122	*109 147	*110 151
ermare emi	•	134 + 1€4	109		- , -							
Sidili Sidi	;	189 +170	193 186									
54 H 1 54 H 1	; ;	+317 +337 +329	007 029 201	009 255 314	317 331	323						

Company of the last of the las

0.1		179	(39)	+40	+41	r.12	*43	+-1.4	*45	+.16	+47	¥49
	F i	+°;Œ	1 E 1	+53	153	101	100	1003	141.4	105	106	107
	* .	rpa 195	1171	111	112	114	115	116	117	113	120	11
,	-	i -	+711	397	46.1							
1 · . •		11.7		. ,	40.1							
1.1		4107										
42° 1	1	+331	1332	4738	%339	*340	≭ 341	344				
	2	+35	部	40	42	43		- , ,				
4.0	•;	136	37	59	41							
	:	+37	44	45								
Ī	<u>:</u>	+32	3.4	36	227	353						
1		+32	7.4	35	36	54	353					
1.5	4	+7.2	-,									
'n		+188	193									

Appendix B Example Output

MATRIX ANALYSIS OF CONTINUOUS REAM											
MEMBER	LENGTH	E		EFT SHEAR	LEFT MOMENT	RIGHT SHEAR	HIGHT MOMENT				
1	60.	1700000.	20.8	266.2	0	-16.2	8469.3				
5	84.	1700000.	20.8	16.2	-6469.3	333.6	-4873.6				
3	106.	1700000.	20.8	90.1	4873.6	1	• 0				
DEGREE (F FREEDOM		VERT	ICAL DISPLA	CEMENT	R	OTAT LON				
			_	OF	GHT OF INT	LEFT OF Joint	(1 F				
	1 3 5 7 2			3824	0000 0000	0020	01135 500205				
	6					00124	.00572				
DEGREE O	F FREEDOM	REACTION	MOM	ENT							
	1 5 7	266.16 425.97 13									

Literature Cited

The second secon

- American Plywood Association. Cantilever in-line joist system. APA No. Z 417, Am. Plywood Assoc., Tacoma, Wash.
- 2. National Association of Homebuilders Research Foundation, Inc.

1979. In-line off-center spliced joists for residential floor construction. Rep. LR 207-36 to Natl. Assoc. of Homebuild., Washington, D.C., May.

- National Forest Products Association. 1973. Span tables for joists and rafters. Natl. For. Prod. Assoc., Washington, D.C.
- 4. Willems, N. and W. M. Lucas, Jr. 1968. Matrix analysis for structural engineers. Prentice-Hall, Inc., Englewood Cliffs, N.J.

CO2-11-2

U.S. Forest Products Laboratory

Analysis of Continuous Beams with Joint Slip, by Lawrence Goltis, Madison, Wis., FPL 1981.

20 p. (USDA For. Serv. Res. Note FPL 0244).

A computer analysis method and input user guideline to determine internal forces, reactions and deflections of continuous beams with rotational slip at supports is presented. The method and computer program are applicable to any continuous beam structure, although developed specifically for two-span floor joist analysis and design.

Keywords: Joist design, rotational slip, two-span floor joist, deflections, continuous beams.